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We have derived the basic forms of the equivalent linear equations for
nonlinear high-intensity non-steady-state heat- and mass-transfer.
Methods are proposed for the modeling of these processes on the basis
of various physical analogies.

The one-dimensional equation of high-intensity non-
steady-state processes of heat- and mass-transfer,
formulated by A. V. Luikov [1], has the form
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If we neglect the term with the second derivative,
Eq. (1) represents the classical heat-conduction equa-
tion in which the well-known paradox is the presence
of an infinite rate of heat propagation.

Consideration of the nonlinear temperature proper-
ties of the medium, when the functions c, v, and A are
functions of temperature, leads to the existence of a
finite heat-propagation rate [2], which is a function of
the material properties and the conditions under which
the heat flows are produced.

P. Vernotte [3] indicated the existence of a finite
heat-propagation rate for high-intensity non-steady-
state processes of heat transfer in rarefied media;

A. V. Luikov [4] did the same for the processes of
heat- and moisture-transport in capillary-porous
media. The rate of heat propagation is given by

For metals the velocity constant is on the order of
Tr~10"! sec, while for gases it is on the order of
’r1.~1()'9 sec. For example, for nitrogen the rate of
heat-propagation is wp~150 m/sec.
It may develop in high-intengity non-steady-state

processes of heat- and mass-transfer that the term

" with the first derivative with respect to time is con~
siderably smaller than the term with the second deriv-
ative. In this case, the equation of heat- and mass—
transfer is a purely hyperbolic wave equation [1]
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In the case of mass transfer, T is understood to refer
to the concentration of the medium. If we assume that
the heat-propagation rate wy is finite and constant,
Eq. (3) will describe the propagation of the heat- and
masgs-transfer waves, and the nature of the heat prop-
agation will no longer be diffusive as in the classical
theory of heat transfer, but rather it will be wavelike.
The methods for the integration of Eqg. (3) with the con-

stant wr are well known, and we will not dwell on these
here.

Let us consider the hyperbolic heat-conduction equa-
tion (3) in which the heat-propagation rate wy of (2) is
exclusively a function of 8T/0x, i.e., of the tempera-

ture gradient:
w, =w, (27;> . (2a)
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In this case, Eq. (3) is changed from a linear equation
to a quasi-linear heat-conduction equation:
2 2
PT _ 2(3T\ 2T @
a1? O0x | 0x®
Having introduced the characteristic directions for
the temperature field (4), we can bring Eq. (4) to an
equivalent system of ordinary differential character-
istic equations:
the equations for the first family of characteristics:

dx = 4 w,dr, (5)
dT: = +w,dT,, (6)

the equations for the second family of character-
istics ¢

ds = —w,dr, (1)
dTy = —w,dT,, (8)
where
r.=L, 1, 9T @)
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Equations (6) and {8) are independent of Egs. (5)
and (7) for the characteristics of their families and
can be integrated separately. This yields the two first
integrals of the characteristic equations (5)—(8):
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where £ and 7 are constants, which, however, change
from characteristic to characteristic.

After finding the first integrals of (10) and (11), the
problem reduces to the integration of the system of
equations (5) and (7). We will demonstrate that for the
integration of this system it is sufficient to solve a
system of linear partial-differential equations with
variable coefficients.

Let us bring Egs. (5)—(8) to a new form by an in-
version method [5—7]. As the independent variables,
for this we will introduce the so-called characteristic
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variables determined from formulas (10) and (11), and
we will regard the old independent variables x and 7 as
the sought functions of the new variables, i.e., let us
consider the transformation )
x:““x(gv 'f]), (12)
T=1(E 0 (13)
Transition to the new variables is possible if the Jaco-
bian of transformations (12) and (13)
J= 2££*9i11> (14)
at dn
is different from 0.
In this case, instead of the nonlinear equation {4) or
its equivalent system of characteristic equations (5)—
(8), we obtain two linear equations

0x at

Tt ) — 15
3% + @ 3t (15)
dx ) ov

FiY = ~w, (&, 11)6‘“~ ) (16)

where wy(£, n) is therate of heatpropagation expressed
in the form of a function of the characteristic varia-
bles £ and 71 on the basis of formulas (10) and (11).

The system of equations (16) and (11) represents a
system of linear partial-differential equations of first
order with variable coefficients and is completely
equivalent to Eq. (4) if the Jacobian of the transforma-
tion is different from 0. .

If the Jacobian of the transformation is equal to 0,
Egs. (15) and {18) are not satisfied, since the deriva-
tives

0x ox gt dt
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may vanish in this case.

However, the case in which the Jacobian of (14)
vanishes is represented by the simplest solutions of
Eq. (4), since this case describes the so-called simple
or shock waves of heat or mass transfer. This case is
of independent interest, and we will treat it separately
in another paper.

We will present other forms of Eq. (4) or of Egs.
(56)—(8), equivalent to these but reduced to linear equa-
tions.

Let us introduce the independent variables v and v
in accordance with the formulas

U= g‘ ’ UV == —?I—- R (17)
dz 0x

and regard the old variables x and 7 as the sought func~
tions, assuming that the Jacobian of the transforma-
tion is not equal to 0:

J:fix_,‘ﬁ_élix_), (18)

Vouw v au v

Using (17) and (18) we bring Eqgs. (5)—(7) to equivalent
form
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where wy is a function exclusively of the single vari-
able v. The form of Egs. (19)—(20) is convenient in the
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integration of the equations for high-intensity non-
steady-state heat- and mass-transfer.

Equations (15)—(16) or (19)—(20) are easily reduced
to linear partial-differential equations of second order
with variable coefficients for either one of the func-
tions x or 7.

By differentiation and elimination, instead of (15)
and {16) we obtain two second-order equations

2
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where ¢ = £ + n and we assume that dwr/0t = dwyr/om =
= dwr/do. We can reduce Eqgs. (19) and (20) in similar
fashion to second-order equations by the same proce-

dure.

Considering Eq. (4) or its equivalent system of equa-
tions (5)—(8), (15)—(16), (19)—(20), or (21)-(22), we
draw the conclusion that if we assume the rate of prop-
agation for the heat waves to be exclusively a function
of the heat flow, the equations of propagation for heat-
and mass—-transfer will formally coincide with the equa~
tions of nonlinear nondissipative and nondispersive
electrodynamics [5—7]. This formal analogy can be
used for the modeling—by the electrical methods of
nonlinear electrodynamics—of the processes of non-
linear high~intensity heat- and mass-transfer.

This formal analogy also indicates new phenomena
which will accompany the propagation of the heat- and
mass—transfer waves in a nonlinear medium. In partic-
ular, we can predict the appearance of heat- and mass-
transfer shock waves.

The intensity of the electric field E can be compared
to the magnitude of 8T/0x; the intensity of the mag-
netic field H can be compared to the magnitude 8T/87
or, conversely, it may depend on the nonlinear elec-
tromagnetic medium that is chosen.

Moreover, we can cite the analogy between the pro-
cesses of intense heat- and mass-transfer and the
propagation of elastic~plastic waves [8], gasdynamic
waves [9—10], etc.

NOTATION

7 is the time; x is the coordinate; ¢ is the heat
capacity; v is the specific weight of the material; A is
the thermal diffusivity; wr is the rate of heat (or mass)
propagation; 7Ty is the time constant.
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